포스텍 노준석 교수 연구팀, 인공신경망 시스템 개발 성공

이영균 | lyg0203@segye.com | 입력 2020-08-13 03:00:00
  • 글자크기
  • +
  • -
  • 인쇄
  • 내용복사

포스텍(포항공대)기계공학과∙화학공학과 노준석(사진)교수와 박사과정 이치헌씨, 기계공학과 이승철 교수와 통합과정 나주원씨, 박성진 교수 공동연구팀이 인공신경망과 무작위 탐색을 결합해 사출성형 공정 조건을 추천해주는 시스템을 개발했다.
 
12일 포스텍에 따르면 사출성형이란 가소성 재료로 제품을 만드는 가공 방식을 말한다.
 
연구팀은 이 시스템을 활용하면 다양한 모양의 결과물을 실시간으로 얻을 수 있다고 설명했다.
 
특히 연구팀은 그 동안 인공지능으로 공정 조건과 최종 제품과의 관계를 학습하고, 최종적으로 원하는 품질을 만족하는 공정 조건을 찾기 위한 연구를 진행해 왔다.
 
우선, 36개의 서로 다른 금형으로부터 3600개의 시뮬레이션 데이터와 476개의 실험데이터를 얻어 학습했다. 
 
그 결과, 각각의 데이터는 15개의 모양과 5개의 공정을 입력값으로 하고, 최종 제품의 무게를 출력값으로 가지는 것을 확인했다.
 
전이학습을 도입해 학습된 무게 예측 모델을 바탕으로, 무작위 탐색함으로써 최적 공정 조건을 찾아주는 추천 시스템도 개발했다.
 
이 같이 인공지능 모델로부터 추천받은 공정 조건을 검증한 결과, 0.66%의 평균 상대 오차를 달성했다.
 
연구팀은 실제 사출기(射出機)에 활용하기 위해 그래픽유저인터페이스(GUI)도 개발했다. 
 
이를 통해 사출성형 비전문가도 해당 시스템을 바탕으로 임의의 제품에 대해 모양 정보를 입력해줌으로써 원하는 결과물 무게의 1% 이내의 오차를 가지는 공정 조건을 달성할 수 있었다.
 
기존 연구는 정해진 특정 제품에서 공정 조건만 변경해 최종 제품의 품질을 예측했다.
 
이에 임의의 새로운 제품을 성형하더라도 해당 제품의 모양만 입력하면 결과를 예측해 학습데이터를 생성하지 않고도 공정 조건을 제어할 수 있다.
 
전이학습을 도입해 시뮬레이션 데이터의 양과 실험 데이터의 정확도도 모두 얻을 수 있었다.
 
이번에 개발된 인공신경망 시스템을 활용하면 사출전문가가 아니더라도 제품의 모양과 원하는 최종 제품의 무게를 입력하는 것만으로 균일한 결과물을 얻을 수 있다.
 
이 시스템을 통해 어려웠던 플라스틱 사출 공정이나 절삭, 3D프린터, 주조 등 다양한 제조업에 ‘무인화 스마트 팩토리’를 달성할 수 있을 것으로 기대된다.
 
이번 연구 성과는 전문 저널인 ‘어드밴스드 인텔리전트 시스템즈’ 최근호에 발표됐다.
 
한편 이 연구는 LS엠트론, 한국생산기술연구원, VM테크, 포스코와 공동 연구로 이뤄졌으며, 과학기술정보통신부-한국연구재단(중견연구, 글로벌프론티어사업, 
 
RLRC선도연구센터), 산업통상자원부∙한국산업기술평가관리원(기계산업핵심기술개발사업)의 지원으로 수행됐다.
 
포항=이영균 기자 lyg0203@segye.com




ⓒ 세상을 보는 눈, 세계일보 & Segye.com

[저작권자ⓒ 세계로컬타임즈. 무단전재-재배포 금지]

  • naver
  • 카카오톡 보내기
  • 카카오스토리 보내기
이영균 다른기사보기
  • 글자크기
  • +
  • -
  • 인쇄
  • 내용복사

헤드라인HEAD LINE

포토뉴스PHOTO NEWS